Course Title:	CS-811, Component-Based Software Engineering
Credit Hours:	3+0
Pre-requisites:	Software Engineering
	Object Oriented Programming
Course	This course introduces the fundamental concepts and state-of-
Description:	the-art research in Component-Based Software Development
	(CBSD) from the perspective of Software Engineering. It
	explains how the component-based development has evolved
	from Object Orientation (OO) and emphasizes its importance. It
	examines the important topics in design, architecture and
	implementation of component-based systems. The course will
	start with a brief historical perspective of the evolution of CBSD
	over the years, and then cover the fundamental concepts in
	common component-based systems. Advanced topics such as
	recursive components, formal methods in CBSD and semantics
	base matching of components may also be covered.
Learning	On successful completion of this course students will be able to:
Outcomes:	1. Explain precisely what CBSE is and why it is as
	important to software development as the assembly line
	was to the industrial revolution
	2. Avoid common mistakes while succeeding with difficult
	and important cultural, budgetary, and process issues
	3. Compare and contrast various CBSE procedures to
	ensure good software development practices
	4. Describes a layered method for designing and building
	complex distributed component systems using the
	Unified Modeling Language
	5. Understand common component technologies, such as
	CORBA CCM, OSGi, Fractal and Service Component
	Architecture.
Text Books:	■ Component software: Beyond Object-Oriented
	Programming (2/Ed.) By Clemens Szyperski, Dominik

	Gruntz, Stephan Murer, Addison-Wesley, 2002.
	 Component-Based Software Engineering: Putting the
	Pieces Together, Authors: George T. Heineman and
	William T. Councill, Addison-Wesley 2001.
Reference	■ Component Based Software Development: Case
Books:	Studies, by Kung-Kiu Lao, World Scientific, 2004.
	Service- and Component-Based Development, Authors:
	Hedley Apperly, Ralph Hofman, Steve Latchem et al.,
	Pearson Education, 2003.
	■ Foundations of Component-Based Systems, Gary T.
	Leavens and Murali Sitaraman, Cambridge University
	Press, 2000.
Course	 Introduction to Component-Based Systems
Contents:	 History and Overview
	 From Objects to Components
	 Basics of Construction
	 Componentization
	 Interfaces and Requirements
	o Contracts
	 Interaction Protocols
	 Component Bindings
	 Component compositions, component publication and
	refinement
	 Architectural Description of Component-Based Systems
	○ CBSD and UML
	o COTS: Specifications
	Architectural Requirements
	Acquisition Process
	 Aspect-Oriented Approach
	 Agile Software Development
	 Software Systems Synthesized from Components
	 Characteristics and Properties
	 Case Study: CORBA Component Model

- o Fault-based Testing of CCM
- o Case Study: OSGi Component Model
- Service Component Architecture
- Reflection and Recursive Composition
 - o Fractal Component Model
- ARIFS Methodology
- Component Adaptation
 - o Case Study: REBOUND
- Web-Enabled Component Based Architecture
- Measurement and Control
- Embedded Systems
- Formal Methods and Semantics
 - o Matching of Component Specification